United States Patent

US009465799B2

(12) (10) Patent No.: US 9,465,799 B2
Hughes et al. 45) Date of Patent: Oct. 11, 2016
(54) SERVER-SIDE INTERNATIONALIZATION 2003/0084401 Al* 5/2003 Abel GO6F 17/30867
AND LOCALIZATION OF WEB 715/205
APPLICATIONS USING A SCRIPTING 2008/0133216 Al™* 6/2008 Togamiccccovvvveenenn. 704/4
2009/0192783 Al* 7/2009 Jurach et al. 704/4
LANGUAGE 2010/0286977 AL* 11/2010 Chin et al. 715/256
2011/0218958 Al1* 9/2011 Warshavsky et al. . 706/54
(75) Inventors: Shannon Ray Hughes, Fuquay Varina, 2012/0017146 Al* 1/2012 Travieso et al. 715/265
NC (US); Jason E. Rist, Denver, CO
(Us) OTHER PUBLICATIONS
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) Somerville, Matthew, “JavaScript Internationalisation by Matthew
N Somerville or: Why Rudolph is More Than Just a Shiny Nose”,
(*) Notice: SUbJeCt.tO any dlSCIalmer{ the term of this dated Dec. 9, 2007, 4 pages, http://24ways.org/2007/javascript-
patent is extended or adjusted under 35 internationalisation.
U.S.C. 154(b) by 518 days. Miller, Joshua I., Gettext—Javascript Implemenation of GNU Get-
text API, Feb. 12, 2009, 10 pages, http://jsgettext.berlios.de/doc/
(21) Appl. No.: 13/270,042 html/Gettext html.
(22) Filed: Oct. 10, 2011 (Continued)
(65) Prior Publication Data
US 2013/0091425 A1 Apr. 11, 2013 Primary Examiner — Ariel Mercado
74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
Y, AL
(51) Int. CL
GO6F 17/24 (2006.01)
GOGF 17/28 (2006.01) &7 ABSTRACT
GO6F 17/30 (2006.01) . .
GO6F 1727 (2006.01) A server computing system receives a request for aweb page
(52) US. CL from a client that specifies a preferred language and searches
CPC ... GOGF 17/289 (2013.01); GOGF 17/2735 mapping data stored in a local data store using a web page
(2013.01); GOGF 17/30893 (2013.01) identifier in the request to locate one or more terms for the
(58) Field of Classification Search requested web page to be translated. The server computing
CPC ... GOGF 17/289; GOGF 17/2827; GOGF system searches translations for web pages in the local data
17/2735; GOGE 17/3089; GOG6F 17/30893; store for a sub-set of the translations that correspond to the
GOGF 17/30896; GOGF 17/30905; GOGF terms for the requested web page in the specified language.
17/30902 The computer system generates a client-executable script to
USPC oo 715/259, 264, 265 provide the sub-set of translations that correspond to the
See application file for complete search history. terms to the client and transmits the requested web page and
the client-executable script having the sub-set of translations
(56) References Cited for the requested web page to the client. The client-execut-

U.S. PATENT DOCUMENTS

7,441,184 B2* 10/2008 Frerebeau et al. 715/234
7,607,085 B1* 10/2009 Lassesen 715/255
7,784,026 Bl 8/2010 Wong

able script, when executed on the client, renders the web
page in the specified language.

11 Claims, 5 Drawing Sheets

e

v

Recale & raquest fora
web page from a cllent

v
Ideniiy one of mor lerris to be
renslated forthe requested web page

Identiy a locale configured for a we
browser commuricating the request

P —
Search a ranslated
dictionary for a sub-set
of tansiatons in the benslates
ditonry thal orrespond to
the terms and the specifid ocale

v
Dynamically generale a lient-
‘executable suipt to provids the subset-
of ranslaions that corespond fo one
or more tetms o the cient

Transiit, by a processing device, the
Tequested web pags and th cent-
executable scrptcomprising the sub-
satof trenslations fo the raquested
weh page to the clent

—_—
(&

o1
303
05
7
e

31

US 9,465,799 B2
Page 2

(56) References Cited Refsnes Data, JavaScript Where To, <w3schools.com/js/js__
whereto.asp>, published on Feb. 2011, 3 pages, Norwegian software
development and consulting company.

OTHER PUBLICATIONS Refsnes Data, JavaScript Functions, <w3schools.com/js/js_ func-
tions.asp>, published on Apr. 2009, 3 pages, Norwegian software
Pereira, JavaScript, 5 ways to call a function, http://devlicio.us/ development and consulting company.

blogs/sergio_ pereira/archive/2009/02/09/javascript-5-ways-to-
call-a-function.aspx, posted on Feb. 9, 2009, 5 pages. * cited by examiner

US 9,465,799 B2

Sheet 1 of 5

Oct. 11, 2016

U.S. Patent

011 aInpopy
uone|suel]

G} tonsg
uoneaijddy gap

A

o

oct

s

JOMBN ¢

| Ol

€91 1duog
uolje|sue.

©g1 abed ga

081 Jesmolg

<

¥i sl

101
188N

U.S. Patent Oct. 11, 2016 Sheet 2 of 5

US 9,465,799 B2

User Interface
202

Data Store
250\ P —_— Translation
""" ' Module 200
25_0 ________________________________
Data Generator
Translation Data 257 Sub-Module 205
Dictionary 251
Search
Sub-Module 210
Translated
Dictionary 253
Script
Web Page Sub-Module _Zl_
Mapping Data
29 User Interface
Generator
Sub-Module 225
Data Store
260\
J 250 } --------------------------------

Source Code 261

FIG. 2

U.S. Patent Oct. 11, 2016 Sheet 3 of 5 US 9,465,799 B2

300

(START)

1 301

Receive a request for a
web page from a client

I 303

Identify one or more terms to be
translated for the requested web page

I 305

Identify a locale configured for a web
browser communicating the request

I 307

Search a translated
dictionary for a sub-set
of translations in the translated
dictionary that correspond to
the terms and the specified locale

I 309

Dynamically generate a client-
executable script to provide the subset-
of translations that correspond to one
or more terms to the client

I 311

Transmit, by a processing device, the
requested web page and the client-
executable script comprising the sub-
set of translations for the requested
web page to the client

B

(END)

~—

FIG. 3

U.S. Patent Oct. 11, 2016 Sheet 4 of 5 US 9,465,799 B2

400

;javascript

var localize = {

password match: #{ ('The passwords do not match')}’,
very weak: "#{ ("Very Weak™)}',

weak: '#{ ("Weak")}',

good: '#{ ("Good")}',

strong: '#{ ("Strong")}',

meterText: '"#{ ("Password Strength")}',

§5

FIG. 4

U.S. Patent Oct. 11, 2016

Sheet 5 of 5 US 9,465,799 B2
- 500
Processing Device 502 N ‘
Instructions 522
- Video Display
Translation Module 200 - " 510
’ i Alpha-Numeric Input Device
) i 212
Cursor Caonirof Device
] 214
Main Memory 504 Signal Generation Device
\\ Lt —5i6—
Instructions 522
Translation Module 200
2
@ Data Storage Device 518
Machine-Readable Storage Medium
528
Instructions 522
Static Memory } | Translation Module 200
506
Network Interface Device N
508 >
Network ? I

D S FIG. 5

US 9,465,799 B2

1
SERVER-SIDE INTERNATIONALIZATION
AND LOCALIZATION OF WEB
APPLICATIONS USING A SCRIPTING
LANGUAGE

TECHNICAL FIELD

Embodiments of the present invention relate to interna-
tionalization of web applications. Specifically, the embodi-
ments of the present invention relate to server-side interna-
tionalization of web applications using a scripting language.

BACKGROUND

JAVASCRIPT code is often used to update/render specific
areas of a web page by moditying the web page’s current
elements. JAVASCRIPT messages can be used to alert users
of errors and other types of messaging that are separate from
a web application server. At times, the JAVASCRIPT mes-
sages include text to be translated. Internationalization of
web application pages, including JAVASCRIPT messages,
involves developing the web application to be adapted to
various languages and regions without having to make
extensive application programming changes. Localization is
the process of adapting an internationalized application for
a specific region or language by adding locale-specific
components and translating text. Internationalization and
localization is often abbreviated to “i18n’.

Conventional internationalization and localization solu-
tions usually involve designing an application to reference
resource libraries. Traditionally, an application’s client-side
code uses a ‘gettext’ client-side method to access a large
resource library of translated strings, which is downloaded
to the client from a server. A server sends all known
translated strings to a client (in multiple locales) in the form
of a resource library. Subsequently, the client looks up a
translation of the components of the client-side code in the
resource library and retrieves the translated strings from the
library. Use of a large resource library on the client, how-
ever, results in an ineflicient use of client resources. Clients
needlessly download a library of thousands of translated
strings, but utilize only a fraction of the library, using more
network bandwidth than needed. For example, a client
downloads five thousand translated strings and searches
thousands of translated strings, when needing to retrieve, for
example, only 20 translated strings for a web application
page. In another example, a client does not need many of the
locales that are provided by a large resource library. Some
traditional solutions use JSON (JAVASCRIPT Object Nota-
tion) data structures to hold translations for all locales on the
client. The JSON format is often used for serializing and
transmitting structured data over a network connection and
is primarily used to transmit data between a server and a web
application. As an application grows, the resource library of
translated strings also grows, and the use of JSON leads to
scalability issues. The installation of a large resource library
on the client and the use of the JSON format increases the
bandwidth needed to support the client, which creates more
strain on a server since many clients are talking to the same
server.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings in which like references indicate similar
elements. It should be noted that different references to “an”

25

40

45

60

2

or “one” embodiment in this disclosure are not necessarily
to the same embodiment, and such references mean at least
one.

FIG. 1 is an exemplary network architecture in which
embodiments of the present invention may operate.

FIG. 2 is a block diagram of one embodiment of a
translation module.

FIG. 3 is a flow diagram of an embodiment of a method
for server-side translation of web pages.

FIG. 4 is a block diagram of exemplary client-executable
script that is generated on a server and transmitted to a client
for translation of a web page.

FIG. 5 is a diagram of one embodiment of a computer
system for server-side translation of web pages.

DETAILED DESCRIPTION

Embodiments of the invention are directed to a method
and system for server-side translation of web pages using a
script language. A server computing system receives a
request for a web page from a client that specifies a preferred
language. The server computing system searches mapping
data stored in a local data store using a web page identifier
in the request to locate one or more terms for the requested
web page to be translated. The server computing system
searches a translations for web pages in the local data store
for a sub-set of the translations that correspond to the one or
more terms for the requested web page in the specified
language. The computer system generates a client-execut-
able script to provide the sub-set of translations that corre-
spond to the one or more terms to the client and transmits the
requested web page and the client-executable script having
the sub-set of translations for the requested web page to the
client. The client-executable script, when executed on the
client, renders the web page in the specified language.

Embodiments of the present invention greatly reduce the
amount of work which client web browsers perform with
regards to displaying text to support internationalization and
localization efforts. Embodiments perform server-side cre-
ation of script, such as JAVASCRIPT code, that translates
only the locales and the translated strings that are needed by
the client for a particular web page and sends a dynamic
script (e.g., JAVASCRIPT code) containing the translations
to the client. Embodiments provide a scalable solution and
eliminate unnecessary wasted bandwidth associated with
data that is not going to be used on a client.

FIG. 1 is an exemplary network architecture 100 in which
embodiments of the present invention can be implemented.
The architecture 100 includes a web application server 150
coupled to one or more clients 140 via a network 120. A
client 140 can be hosted by any type of computing device
including server computers, gateway computers, desktop
computers, laptop computers, mobile communications
devices, cell phones, smart phones, hand-held computers, or
similar computing device. The network 120 can be a public
network (e.g., Internet) or a private network (e.g., a local
area network (LAN)).

A user 101, such as a web user, can use a client 140 to
access Internet data hosted by a web application server 150.
A web application server 150 can be hosted by any type of
computing device including server computers, gateway
computers, desktop computers, laptop computers, hand-held
computers or similar computing device. For example, the
user 101 may wish to reserve an airline flight using the
Internet and may access the web page 185 of an airline to
search for a flight and purchase a ticket. The client 140 can
access one or more web pages 185 using a browser 180, or

US 9,465,799 B2

3

a similar web-page rendering application, to retrieve a web
page 185 from a web application server 150 and render the
retrieved web page 185 on the client 140. A browser 180 can
be configured by a user 101 for a default or preferred
language preference settings. The language preference set-
tings, hereinafter referred to as “locale”, may be automati-
cally set in the web browser configuration automatically
(based on the client location or the language used by a user)
or based on a user’s preferences. In addition, a web page 185
can present a user 101 with a number of different country
options for translating the web page 185.

The web application server 150 can include a translation
module 110 to receive an initial request for a web page 185
from a web browser 180 for a particular web page 185. The
translation module 110 can generate translation script 183
for the requested web page 185 and transmit the translation
script 183 and the requested web page 185 to the browser
180 via the network 120. The translation script 183 can be
client-side JAVASCRIPT code to run on a client 140. The
translation script 183 can include the translations needed by
a browser 180 for a particular locale. The browser 180 can
receive the web page 185 and the translation script 183 and
load the web page 185. When the translation script 183 is
executed by the browser 180, the translation script 183 can
dynamically load the translations for the web page 185 on
demand to render the web page 185 in an appropriate
language.

Thus, the client 140 can use a minimal amount of client
resources (e.g., memory, storage space, network bandwidth,
etc.) by receiving a translation script 183 from a server 150
for a particular web page 185 and storing and executing the
translation script 183 corresponding to particular web pages
185, rather than locally storing an entire library of transla-
tions in various languages.

FIG. 2 is a block diagram of one embodiment of a
translation module 200 for server-side translation of web
pages. In one embodiment, the transaction manager module
200 can be the same as the translation module 110 hosted by
a server 150 of FIG. 1. The translation module 200 can
include a data generator sub-module 205, a search sub-
module 210, a script sub-module 215, and a user interface
(UI) generator sub-module 225.

One or more users, such as web application developers,
can develop web pages for a web application. The web pages
can include strings that should be translated. The data
generator sub-module 205 can search for indicators in the
source code 261 for the web pages, which indicate that a
translation is required for one or more strings, and generate
a dictionary 251 based on the indicators and strings. The
source code 261 can be stored in a data store 260 that is
coupled to the translation module 200. The dictionary 251
can be a flat file, relational database, spreadsheet, or the like,
and stored in a data store 250. A data store 250,260 can be
a persistent storage unit. A persistent storage unit can be a
local storage unit or a remote storage unit. Persistent storage
units can be a magnetic storage unit, optical storage unit,
solid state storage unit, electronic storage units (main
memory), or similar storage unit. Persistent storage units can
be a monolithic device or a distributed set of devices. A “set’,
as used herein, refers to any positive whole number of items.

The data generator sub-module 205 can generate and send
a request to a translator to translate the dictionary 251. The
request can include the dictionary 251 and can also specify
which languages to translate the dictionary 251 to. In one
embodiment, the translator is an automated translation ser-
vice provided by a service provider and/or provided by a
translation application or translation tool. In one embodi-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ment, the translation service provider specifies the languages
to be used for translation. In one embodiment, the translator
is hosted by the same computing system that hosts the data
generator sub-module 205. In another embodiment, the
translator is hosted by a computing system that is separate
from the computing system that hosts the data generator
sub-module 205 and the data generator sub-module 205
communicates with the translator via a network. In another
embodiment, the translator is one or more users that provide
a translation service and the data generator sub-module 205
can receive user input of a translation result from the users
via the user interface 202. The user interface 202 can be a
graphical user interface. The user interface generator sub-
module 225 can generate the user interface 202.

The data generator sub-module 205 can receive a trans-
lation result from the translator and store the translation
result as a translated dictionary 253 in the data store 250.
The translated dictionary 253 can include the strings and
values for the strings. The values can be the translation of the
string in different languages.

The data generator sub-module 205 can use the strings in
the translated dictionary 253 as keys to search the translated
dictionary 253. The data generator sub-module 205 can
generate and store web page mapping data 255 that contains
web page identifiers and the keys that correspond to the web
page identifiers. Examples of a web page identifier can
include, and are not limited to, a uniform resource locator
(URL) and IP address. The data generator sub-module 205
can generate the web page mapping data 255 based on the
web pages developed by the web application developers. For
example, web mapping data 255 may include a URL and/or
IP address for an account login web page and the keys of the
terms to be translated in the account login web page, such as
‘login’, ‘username’, ‘password’, ‘forgot password’, and
‘submit’.

The search sub-module 210 can receive a request for a
web page of a web application from, for example, a web
browser, and can access the stored web page mapping data
255 and translated dictionary 253 to provide the web
browser the values of the terms to be translated in the
requested web page. The search sub-module 210 can locate
a web page identifier in the request and search the web page
mapping data 255 for a matching web page identifier and
determine which keys are associated with the web page
identifier. The search sub-module 210 can use the keys and
a locale identifier in the request to search the translated
dictionary 253 for the translation values that correspond to
the keys in the language as specified by the locale identifier.

The script sub-module 215 can generate a dynamic script,
such as JAVASCRIPT code, that includes the translation
values that correspond to the keys and send the script and the
requested web page to the web browser as a response to the
web page request. The script can provide all the translations
needed for the requested web page in the specific locale, as
specified in the request. The web browser can load the web
page and use the script to render the web page with the
translations. The script sub-module 215 can design the script
to run immediately when the web page is loaded. A script
can run before render, as well as while rendering. In one
embodiment, the script sub-module 215 generates script
code (e.g., JAVASCRIPT code) for a function embedded in
an external file (e.g., .js file). The external file is a file that
is separate from the requested web page. The script sub-
module 215 can send the file and the requested web page to
the client. In one embodiment, web application developers
include a reference to the file in a section (e.g., HEAD
section) of code of the web page, and when the client loads

US 9,465,799 B2

5

the requested web page, the web page can call the function
in the external file and reference the translation values
provided from calling the external file to render the web
page in the appropriate language.

In another embodiment, the script sub-module 215 gen-
erates script code and modifies the source code of the
requested web page by embedding the script code in the
source code for the requested web page. The script sub-
module 215 can send the requested web page, which is
modified to include the script code, to the client. When the
client loads the modified code for the requested web page,
the web page can execute the script code to render the web
page in the appropriate language.

For example, a user may wish to access an airline account
log in web page for access to airline data to purchase an
airline ticket. The search sub-module 210 receives a request
for an account login web page from the browser. The request
includes the web page identifier “https://secure.example-
.com/account/login.html” and the locale identifier “fr” to
represent the French language preference. The search sub-
module 210 uses the web page identifier to search the
mapping data 255 for the keys that are associated with web
page identifier for the account login web page. The mapping
data 255 indicates that five keys, such as ‘login’, ‘username’,
‘password’, ‘forgot password’, and ‘submit’ are associated
with the web page identifier for the account login web page.
The keys represent the terms in the account login web page
which should be translated. The search sub-module 210 uses
the keys to search the translated dictionary for the values that
correspond to the French translations for the keys and the
script sub-module 215 generates a dynamic script (e.g.,
JAVASCRIPT code) that, when executed, provides the five
translation values and sends the script, for example, embed-
ded as part of the rendered account login web page, to the
web browser. The web browser can use the dynamic script
to render the five translation values in the account login web
page.

FIG. 3 is a flow diagram of an embodiment of a method
300 for server-side translation of web pages. Method 300
can be performed by processing logic that can comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (e.g., instructions run on a
processing device), or a combination thereof. In one
embodiment, method 300 is performed by the translation
module 110 hosted by a server 150 of FIG. 1.

Atblock 301, the translation module receives a request for
a web page. The request can be from a client, such as a web
browser, or similar web-page rendering application. The
request can be a HTTP (Hypertext Transfer Protocol)
request. At block 303, the translation module identifies one
or more terms to be translated for the requested web page.
The translation module can search mapping data that is
stored in a data store that is coupled to the translation
module using a web page identifier in the request to deter-
mine which keys correspond to the web page identifier. The
keys represent terms in the web page that should be trans-
lated. The keys can be strings. Examples of a web page
identifier can include, and are not limited to, a uniform
resource locator (URL) and an IP address.

With the request, the web browser sends information
about language preference settings. These are preferences
about the preferred language for one or more web pages. The
language preference settings, hereinafter referred to as
“locale”, may be automatically set in the web browser
configuration based on a user’s preferences. At block 305,
the translation module determines the locale for which the
web browser is configured from the request. The request can

10

15

20

25

30

35

40

45

50

55

60

65

6

include a locale identifier, such as an 118n (internationaliza-
tion and localization) country code identifier. The part of the
HTTP request that can hold the locale identifier (language
preference information) can be an Accept-Language
request-header. Alternatively, a web page may present trans-
lation options to a user and a user may select a translation
that may be different from a web browser’s configuration.
For example, a web page can present a user with a number
of different country options for translating the web page,
such as Belgium, Greece, Russia, United Arab Emirates,
China, Hong Kong, Japan, etc. The request can include a
locale identifier based on the user selection.

At block 307, the translation module uses the keys and the
locale identifier to search a translated dictionary that is
stored in the data store for a sub-set of translations in the
translated dictionary that correspond to the terms for the
requested web page in the specified language. The translated
dictionary is a collection of translated terms for the web
pages of one or more web applications. The sub-set of
translations can include the translation values that corre-
spond to the keys in the language as specified by the locale
identifier. At block 309, the translation module dynamically
creates a script, such as JAVASCRIPT code, that when
executed, provides the translation values for the web page.
The script can be dynamically generated by the translation
module in response to receiving a request (e.g., an initial
request) for a web page. The script can be dynamic client-
executable script that executes at run-time. The translation
module can use a template that is stored in the data store to
generate the script. At block 311, the translation module
sends the requested web page and the script for the requested
web page, for example, in an external file (e.g., s file) or
embedded as part of code of the requested web page, to the
client. The translation module can transmit the requested
web page and the script to the client over a network. The
script, when executed by the client, provides the translation
values for a web browser to use to render the web page in
the specified language.

For example, the translation module receives a request for
a password creation confirmation web page. The request
includes the web page identifier “https://secure.example-
.com/passwordcreation.htm]” and the locale identifier “de”
to represent the German language preference. The transla-
tion module uses the web page identifier to search the
mapping data for the keys that are associated with the
password creation confirmation web page. The mapping
data indicates that five keys, such as ‘password_match’,
‘very_weak’, ‘weak’, ‘good’, ‘strong’, and ‘meterText’ are
associated with the web page identifier for the password
creation confirmation web page. The keys represent the
terms in the password creation confirmation web page which
should be translated. The translation module uses the keys to
search a translated dictionary for the values that correspond
to the German translations for the keys (e.g., ‘password_
match’, ‘very_weak’, ‘weak’, ‘good’, ‘strong’, and ‘meter-
Text’). The translation module generates a script (e.g.,
JAVASCRIPT code) that provides the translation values and
sends it to the web browser. The web browser can load the
requested web page and execute the dynamic script to render
the password creation confirmation web page using the
German translations of ‘password_match’, ‘very_weak’,
‘weak’, ‘good’, ‘strong’, and ‘meterText’.

FIG. 4 is a block diagram of an exemplary client-execut-
able script 400 that is dynamically generated by a translation
module on a server and sent to a client for the client to use
to render a web page with the appropriate translations. The
translation module can dynamically generate the client-

US 9,465,799 B2

7

executable script 400 in response to receiving a request, such
as an initial request during a session, for the web page. The
client-executable script 400 is used to create a JAVASCRIPT
variable named ‘localize’. The client-executable script 400
can be executed by a client after the client receives the server
response delivering the client-executable script 400 from the
initial client request for the web page. When executed by a
browser on the client, the client-executable script 400 pro-
vides the translation values of the terms in a web page to the
web browser, which can then render translated text for the
web page.

FIG. 5 illustrates a diagram of a machine in the exemplary
form of a computer system 500 within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a LAN, an
intranet, an extranet, and/or the Internet. The machine may
operate in the capacity of a server or a client machine in
client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, a switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single machine is illustrated, the term “machine” shall
also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein.

The exemplary computer system 500 includes a process-
ing device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM), double
data rate (DDR SDRAM), or DRAM (RDRAM), etc.), a
static memory 506 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage device 518,
which communicate with each other via a bus 530.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, a
central processing unit, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set comput-
ing (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 502 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
502 is configured to execute instructions 522 for performing
the operations and steps discussed herein.

The computer system 500 may further include a network
interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).

The data storage device 518 may include a machine-
readable storage medium 528 (also known as a computer-
readable medium) on which is stored one or more sets of
instructions or software 522 embodying any one or more of
the methodologies or functions described herein. The

10

15

20

25

30

35

40

45

50

55

60

8

instructions 522 may also reside, completely or at least
partially, within the main memory 504 and/or within the
processing device 502 during execution thereof by the
computer system 500, the main memory 504 and the pro-
cessing device 502 also constituting machine-readable stor-
age media.

In one embodiment, the instructions 522 include instruc-
tions for a translation module (e.g., translation module 200
of FIG. 2) and/or a software library containing methods that
call a translation module. While the machine-readable stor-
age medium 528 is shown in an exemplary embodiment to
be a single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-readable stor-
age medium” shall also be taken to include any medium that
is capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media and magnetic media.

Thus, techniques for server-side translation of web pages
using a script language are described herein. Some portions
of the preceding detailed descriptions have been presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the ways used
by those skilled in the data processing arts to most effec-
tively convey the substance of their work to others skilled in
the art. An algorithm is here, and generally, conceived to be
a self-consistent sequence of operations leading to a desired
result. The operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, combined, compared, and
otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving” or “searching” or “transmitting” or “gener-
ating” or “embedding” or “modifying” or “translating” or
“storing” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage devices.

The present invention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored in a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,

US 9,465,799 B2

9

EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to
a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus
to perform the required method steps. The required structure
for a variety of these systems will appear as set forth in the
description below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other
electronic devices) to perform a process according to the
present invention. A machine-readable medium includes any
mechanism for storing information in a form readable by a
machine (e.g., a computer). For example, a machine-read-
able (e.g., computer-readable) medium includes a machine
(e.g., a computer) readable storage medium such as a read
only memory (“ROM”), random access memory (“RAM”),
magnetic disk storage media, optical storage media, flash
memory devices, etc.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exem-
plary embodiments thereof. It will be evident that various
modifications may be made thereto without departing from
the broader spirit and scope of embodiments of the invention
as set forth in the following claims. The specification and
drawings are, accordingly, to be regarded in an illustrative
sense rather than a restrictive sense.

What is claimed is:

1. A method comprising:

receiving a request for a web page from a client web

browser, the request comprising a locale identifier that
specifies a preferred language and a web page identi-
fier;

searching mapping data stored in a local data store

associating web page identifiers with keys that corre-
spond to the web page identifiers to identify one or
more keys mapped to the web page identifier, the one
or more keys being identifiers of translatable terms
within a plurality of web pages;

searching, within the local data store, to identify a sub-set

of a plurality of translations that corresponds to one or
more translatable terms in the requested web page,
wherein the sub-set is identified using the locale iden-
tifier and the one or more keys;

dynamically generating a client-executable script to pro-

vide the sub-set of translations that correspond to the
one or more terms to the client web browser; and
transmitting, by a processing device of a server, the
requested web page together with the client-executable
script comprising the sub-set of translations for the
requested web page to the client web browser,
wherein transmitting the requested web page together
with the client-executable script comprises:
transmitting the client-executable script in an external
file that is separate from the web page; and
embedding a reference to the external file in a section
of code of the web page, wherein, when the web page
is loaded by the client web browser, the client-

10

20

25

30

35

40

45

50

55

60

65

10

executable script in the external file is executed to
render the web page in the preferred language asso-
ciated with the locale identifier.
2. The method of claim 1, further comprising:
searching for indicators in source code for the plurality of
web pages indicating terms in the plurality of web
pages to be translated;
generating a dictionary comprising the terms to be trans-
lated for the plurality of web pages;
translating the dictionary in a plurality of languages to
generate the plurality of translations for the plurality of
web pages; and
storing the plurality of translations in the plurality of
languages for the plurality of web pages in the local
data store.
3. The method of claim 1, wherein searching to identify
the sub-set of the plurality of translations comprises:
searching for translation values that correspond to the one
or more terms in view of the locale identifier in the
request, the translation values being translations of
terms for the requested web page in a language asso-
ciated with the locale identifier.
4. The method of claim 1, wherein the web page identifier
is a uniform resource locator.
5. A system comprising:
a memory to store a plurality of translations of terms for
a plurality of web pages; and
a processing device operatively coupled to the memory to:
receive a request for a web page from a client web
browser, the request comprising a locale identifier
that specifies a preferred language and a web page
identifier;
search mapping data stored in a local data store asso-
ciating web page identifiers with keys that corre-
spond to the web page identifiers to identify one or
more keys mapped to the web page identifier, the one
or more keys being identifiers of translatable terms
within a plurality of web pages;
search, within the local data store, to identify a sub-set
of a plurality of translations that corresponds to one
or more translatable terms in the requested web page,
wherein the sub-set is identified using the locale
identifier and the one or more keys;
dynamically generate a client-executable script to pro-
vide the sub-set of translations that correspond to the
one or more terms to the client web browser; and
transmit the requested web page together with the
client-executable script comprising the sub-set of
translations for the requested web page to the client
web browser,
wherein to transmit the requested web page and the
client-executable script the processing device is to:
transmit the client-executable script in an external
file that is separate from the web page; and
embed a reference to the external file in a section of
code of the web page, wherein, when the web page
is loaded by the client, the client-executable script
in the external file is executed to render the web
page in a language associated with the locale
identifier.
6. The system of claim 5, wherein the processing device
is further to:
search for indicators in source code for the plurality of
web pages indicating terms in the plurality of web
pages to be translated;
generate a dictionary comprising the terms to be trans-
lated for the plurality of web pages;

US 9,465,799 B2

11

translate the dictionary in a plurality of languages to
generate the plurality of translations for the plurality of
web pages; and

store the plurality of translations in the plurality of
languages for the plurality of web pages in the local
data store.

7. The system of claim 5, wherein, to search to identify the

sub-set of the plurality of translations, the processing device

is further to:

search for translation values that correspond to the one or
more terms in view of the locale identifier in the
request, the translation values being translations of
terms for the requested web page in a language asso-
ciated with the locale identifier.

8. The system of claim 5, wherein the web identifier is a

uniform resource locator.

9. A non-transitory computer-readable storage medium

including instructions that, when executed by a processing

device of a server, cause the processing device to:

receive a request for a web page from a client web
browser, the request comprising a locale identifier that
specifies a preferred language and a web page identi-
fier;

search mapping data stored in a local data store associ-
ating web page identifiers with keys that correspond to
the web page identifiers to identify one or more keys
mapped to the web page identifier, the one or more keys
being identifiers of translatable terms within a plurality
of web pages;

search, within the local data store, to identify a sub-set of
a plurality of translations that corresponds to one or
more translatable terms in the requested web page,
wherein the sub-set is identified using the locale iden-
tifier and the one or more keys;

dynamically generate a client-executable script to provide
the sub-set of translations that correspond to the one or
more terms to the client web browser; and

transmit the requested web page together with the client-
executable script comprising the sub-set of translations
for the requested web page to the client web browser,

15

20

25

30

35

12

wherein to transmit the requested web page and the

client-executable script, the instructions, when
executed by the processing device of the server, further
cause the processing device to:

transmit the client-executable script in an external file
that is separate from the web page; and

embed a reference to the external file in a section of
code of the web page, wherein, when the web page
is loaded by the client, the client-executable script in
the external file is executed to render the web page
in a language associated with the locale identifier.

10. The non-transitory computer-readable storage

medium of claim 9, including further instructions that, when
executed by the processing device, cause the processing
device to:

search for indicators in source code for the plurality of
web pages indicating terms in the plurality of web
pages to be translated;

generate a dictionary comprising the terms to be trans-
lated for the plurality of web pages;

translate the dictionary in a plurality of languages to
generate the plurality of translations for the plurality of
web pages; and

store the plurality of translations in the plurality of
languages for the plurality of web pages in the local
data store.

11. The non-transitory computer-readable storage

medium of claim 9, wherein to search for the sub-set of the
plurality of translations, the instructions, when executed by
the processing device of the server, further cause the pro-
cessing device to:

search for translation values that correspond to the one or
more terms in view of the locale identifier in the
request, the translation values being translations of
terms for the requested web page in a language asso-
ciated with the locale identifier.

#* #* #* #* #*

